# Immunotherapy in Hepatocellular Carcinoma

Tim F. Greten

GI-Malignancy Section Center for Cancer Research





I have no financial relationships to disclose.

## I will discuss the following off investigational use in my presentation: Tremelimumab (anti-CTLA4) for the treatment of HCC



### A growing interest in immunotherapy and HCC





#### Estimated market sales for Immune checkpoint inhibitors



Webster (2014) Nat.Rev. Drug Discovery 13:883

### HCC – an inflammation associated cancer?



Chang et al, NEJM (1997) 336:1855 Chen et al. (2011) Gastroenterology 141:1240–1248

### Immune correlatives correlate with outcome in HCC



#### 17 gene "immune signature"

# NASH controls adaptive immune responses during hepatocarcinogenesis

Ma et al. (2016) Nature 531:253

NATIONAL CANCER INSTITUTE

ΝH

## **NASH - HCC**



modified from Cohen et al. (2011) Science; 332: 1519-23

# **MYC transgenic HCC mouse model**



Shachaf et al. (2004) Nature; 431: 1112-7

## **NASH** promotes hepatocarcinogenesis



## **NASH** promotes hepatocarcinogenesis



## Selective CD4<sup>+</sup> T cell loss in mice with NASH





## Selective CD4<sup>+</sup> T cell loss in mice with NASH





## Selective CD4<sup>+</sup> T cell loss in mice with NASH



# CD4<sup>+</sup> T cells die upon co-culture with hepatocytes from mice with NAFLD



# CD4<sup>+</sup> T cells die upon co-culture with hepatocytes from mice with NAFLD



**ROS production** 



## **N-acetyl cystein treatment prevents CD4<sup>+</sup> T cell loss**



in vitro

## N-acetyl cystein treatment prevents CD4<sup>+</sup> T cell loss



#### in vivo



## N-acetyl cystein treatment prevents CD4<sup>+</sup> T cell loss





# C18:2 kills human CD4<sup>+</sup> T cells, which are reduced in NASH patients





# NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis



Ma et al. (2016) Nature 531:253



## **Immunotherapy Trials in HCC**

Greten et al. (2006) J.Hepatol. 45:868-78

## **Enhancement of Anti-Tumor Immunity by CTLA4 Blockade**



Leach (1996) Science 271:1734

### **Treatment of Cancer with Immune Checkpoint Inhibitors**



Robert et al. (2015) N Engl J Med 372:320

Le et al. (2015) ) N Engl J Med 372:2509

## **Immune checkpoint inhibitors**



Modified from Litman (2015) Cell 162:1186

## Antiviral and Antitumoral Effects of the Anti-CTLA4 Agent



Sangro et al. (2013) J.Hepatol 59:81-88





Llovet, Ducreux, Lencioni; Di Bisceglie; Galle; Dufour; Greten; Raymond; Roskams; De Baere; Mazzaferro., J.Hepatology (2012) 56:908





## Apoptotic/necrotic tumor cell death



### Irradiated vs freeze/thawed tumor cell vaccines



Scheffer et al. (2003) Int. J. Cancer 103:205

### Irradiated vs freeze/thawed tumor cell vaccines



Scheffer et al. (2003) Int. J. Cancer 103:205

# Combined radiofrequency ablation and TLR 9 stimulation in the rabbit VX2 hepatoma model

Tumor growth and survival



## Enhancement of tumor-associated antigen-specific T cell responses by RFA correlates with better survival



# TACE induced CD4 T cell responses are associated with better clinical outcome



Ayaru et al. (2007) J.Immunol 178:1914-22

# A phase I/II proof of concept study evaluating combined locoregional therapy + anti-CTLA4 (tremelimumab) in HCC

Duffy, ..., Greten J. Hepatology 2016 in press

NATIONAL CANCER INSTITUTE

ΝH



#### Greten et al. (2013) Clinical Cancer Research 19:6678-85
# A Pilot Study of Tremelimumab – A monoclonal antibody against CTLA-4 – in combination with ablation in patients with HCC

#### **Trial design**



# A Pilot Study of Tremelimumab – A monoclonal antibody against CTLA-4 – in combination with ablation in patients with HCC

#### **Inclusion criteria**

- Biopsy-proven HCC [Childs Pugh A/B7; BCLC Stage (B)/C; ECOG 0/1]
- Post-sorafenib
- Tumor biopsies performed at the time of the radiologic procedure.
- Restaging CT /MRI scan every 8 weeks to evaluate TTP in **non-TACE/RF lesion**.

### **Patient Characteristics**

|                        | <b>A</b> II <sup>(*)</sup> |
|------------------------|----------------------------|
| Number                 | 32 (6/14/12)               |
| Age                    | ,                          |
| Median (range)         | 61 (36-76)                 |
| Sex                    |                            |
| Male                   | 28 (4/13/11)               |
| Female                 | 4 (2/1/1)                  |
| ECOG                   |                            |
| 0                      | 8                          |
| 1                      | 24                         |
| Liver Cirrhosis        |                            |
| Yes                    | 22 (3/11/8)                |
| No                     | 9 (3/2/4)                  |
| Cause of Liver disease | _ /_ /                     |
| HBV                    | 5 (2/1/2)                  |
| HCV                    | 19 (3/11/5)                |
| Baseline Child         |                            |
| Pugh Score             |                            |
| 5                      | 14 (2/6/6)                 |
| 6                      | 5 (1/3/1)                  |
| 7                      | 3 (-/2/1)                  |

|                                                                                           | AII <sup>(*)</sup>         |  |
|-------------------------------------------------------------------------------------------|----------------------------|--|
| Number of target<br>lesions                                                               |                            |  |
| 1<br>2<br>3-5                                                                             | 5<br>3<br>12               |  |
| >5                                                                                        | 8                          |  |
| Yes<br>No                                                                                 | 14 (2/10/2*)<br>17 (4/4/9) |  |
| Prior sorafenib<br>Yes/no<br>D/C'd due to<br>PD/intolerant<br>Other systemic<br>therapies | 21/7<br>18/3<br>9          |  |
| Other previous interventions<br>TACE<br>Surgery<br>Ablation                               | 11<br>5<br>5               |  |
| Reason for discontinuation<br>Progressive<br>disease                                      | (5/12/3                    |  |
| Toxicity                                                                                  | (1/2/1)                    |  |

#### **Adverse Events**

|                                      | 3.5mg/kg (N=6), n |            | 10mg/kg (N=26), n |            | All patients (N=32), n |            |
|--------------------------------------|-------------------|------------|-------------------|------------|------------------------|------------|
| Toxicity                             | ≥ grade 2         | grades 3-4 | ≥ grade 2         | grades 3-4 | ≥ grade 2              | grades 3-4 |
| Hyperbilirubinemia                   | 2                 | 1          | 5                 | 2          | 7                      | 3          |
| Aspartate aminotransferase increased | 6                 | 4          | 5                 | 3          | 11                     | 7          |
| Alanine aminotransferase increased   | 1                 | -          | 5                 | 3          | 6                      | 3          |
| Pruritus                             | -                 | -          | 3                 | 1          | 3                      | 1          |
| Rash                                 | 3                 | -          | 2                 | -          | 5                      | -          |
| Pneumonitis                          | 1                 | -          | -                 | -          | 1                      | -          |
| Colitis                              | -                 | -          | 2                 | -          | 2                      | -          |
| Angioedema                           | -                 | -          | -                 | 1          | -                      | 1          |
| Thyroid dysfunction                  | -                 | -          | 1                 | 1          | 1                      | 1          |
| Adrenal insufficiency                | -                 | -          | -                 | 1          | -                      | 1          |
|                                      |                   |            |                   |            |                        |            |
| Discontinued due to toxicity*        | 1/6               |            | 3/25              |            | 4 (13%)                |            |

#### **Skin Reaction**





#### Mild colitis



1 cecum with appendiceal



2 terminal ileum



3 ascending colon





5 rectal granular mucosa

Impression:

6 rectal granular mucosa



7 rectum on retroflexion

- Non-thrombosed external hemorrhoids found on perianal exam. - Granularity in the rectum and in the sigmoid colon. Biopsied.

#### Mild colitis

| 10/20/2014 15:18           | Surgical Pathology |  |
|----------------------------|--------------------|--|
| Surgical Pathology         |                    |  |
| CASE NUMBER:<br>DIAGNOSIS: |                    |  |

1. Ileum, terminal, biopsy: Small bowel mucosa with mild inflammation

2. Colon, ascending, biopsy: Lymphocytic colitis with active colitis. See note.

3. Colon, transverse, biopsy: Lymphocytic colitis with active colitis. See note.

4. Colon, descending, biopsy: Lymphocytic colitis with active colitis. See note.

 Colon, sigmoid, biopsy: Lymphocytic colitis with active colitis. See note.

6. Rectum, biopsy: Active proctitis.

NOTE: Immunohistochemistry stains (CD3 and CD8) are performed on specimens # 2, 3 and 5. CD8 stain highlights an increased number of T cells in the colonic epithelium and the lamina propria. The CD3 stain was not contributory because of poor technical quality. Case reviewed by Dr. David Kleiner. **Case 1:** 60yr old male; HBV; BCLC B; multifocal HCC s/p RFAx2



#### **Case 1:** 60yr old male; HBV; BCLC B; multifocal HCC s/p RFAx2



#### **Case 1:** 60yr old male; HBV; BCLC B; multifocal HCC s/p RFAx2

**Case 2:** 54yr old male; HBV; BCLC C; multifocal HCC s/p 2x part. Hepatectomy, 3x TACE, 1 x Y-90, sorafenib, GemOx, FOLFOX, Avastin+erlotinib

# **Case 2:** 54yr old male; HBV; BCLC C; multifocal HCC s/p 2x part. Hepatectomy, 3x TACE, 1 x Y-90, sorafenib, GemOx, FOLFOX, Avastin+erlotinib



#### Case 3: 57yr old male; old male; HBV; BCLC B; 3x TACE



#### Efficacy



#### Efficacy



#### **Survival analysis**



#### **Summary of Efficacy**

|                     | Median TTP | 6-month TTP | 12-month TTP | Median OS   | 6-month<br>survival | 12-month<br>survival |
|---------------------|------------|-------------|--------------|-------------|---------------------|----------------------|
| Ablation<br>(n= 12) | 7.4 months | 58.3%       | 29.2%        | 10.1 months | 75.0%               | 41.0%                |
| TACE<br>(n= 11)     | 7.4 months | 63.6%       | 26.5%        | NR          | 81.8%               | 70.1%                |
| Total<br>population | 7.4 months | 60.9%       | 25.1%        | 13.6 months | 78.3%               | 54.0%                |

#### **Viral Immunity**



#### **Viral Immunity and Treatment Response**



# **Tumor biopsies**







#### **Tumor biopsies**

# **Immune monitoring**

| Population | Phenotype                  | Population                  | Phenotype                       |
|------------|----------------------------|-----------------------------|---------------------------------|
|            |                            |                             |                                 |
| Treg       | CD3+CD4+CCR4+CD25+CD127low | Central memory CD4+ Tcells  | CD4+CCR7+CD45RA-                |
| CD4        | CD4+                       | Naïve CD4+ Tcells           | CD4+CCR7+CD45RA+                |
|            | CD4+4-1BB+                 | Effector CD4+ T cells       | CD4+CCR7-CD45RA+                |
|            | CD4+PD-1+                  | Effector memory CD4+ Tcells | CD4+CCR7-CD45RA-                |
|            | CD4+PD-L1+                 | Central memory CD8+ Tcells  | CD8+CCR7+CD45RA-                |
|            | CD4+TIM3+                  | Naïve CD8+ Tcells           | CD8+CCR7+CD45RA+                |
|            | CD4+CTLA4+                 | Effector CD8+ T cells       | CD8+CCR7-CD45RA+                |
|            | CD4+ICOS+                  | Effector memory CD8+ Tcells | CD8+CCR7-CD45RA-                |
|            | CD4+IL-T2+                 | Activated CD4+ cells        | CD3+CD4+CD38+HLADR+             |
|            | CD4+IFNg+                  | Activated CD8+ cells        | CD3+CD8+CD38+HLADR+             |
|            | CD4+IL-2+                  | Th1 cells                   | CD3+CD4+CXCR3+CCR6-             |
|            | CD4+TNFa+                  | Th2 cells                   | CD3+CD4+CXCR3-CCR6-             |
|            | CD4+Ki67+                  | Th17 cells                  | CD3+CD4+CXCR3-CCR6+             |
| CD8        | CD8+                       | B cells                     | CD19+                           |
|            | CD8+4-1BB+                 | Naïve B cells               | CD19+CD27-                      |
|            | CD8+PD-1+                  | Plasmablast                 | CD19+CD27+CD20-CD38+            |
|            | CD8+PD-L1+                 | Monocytes                   | CD19-CD14+                      |
|            | CD8+TIM3+                  | Plasmacytoid DC             | CD19-CD14-CD20-HLADR<br>+CD123+ |
|            | CD8+CTLA4+                 | Myeloid DC                  | CD19-CD14-CD20-HLADR<br>+CD11c+ |
|            | CD8+ICOS+                  | NK cells                    | CD19-CD14-CD20-CD56hi/low       |
|            | CD8+IL-T2+                 | MDSC                        | HLADR-CD14+                     |
|            | CD8+IFNg+                  |                             | CD14-CD15+CD33+CD11b+           |
|            | CD8+IL-2+                  | CD8+/Treg                   | ratio                           |
|            | CD8+TNFa+                  | CD8+/MDSC                   | ratio                           |
|            | CD8+Ki67+                  |                             |                                 |

#### **Analysis of peripheral T cells**



C1

Non-Responder

C2



#### **Tumor-specific T cell responses**



#### Summary

- Combination of tumor ablation and anti-CTLA4 therapy is feasible.
- The treatment is safe.
- Immune correlates suggest an activation of tumor virus-specific immune responses.
- Anti-CTLA4 therapy leads to infiltration of CD8+ T cells in the tumor of responding patients.

#### A Pilot study of combined anti-CTLA4 + anti-PDL1 in combination with locoregional therapy in subjects with HCC and CCC



Ν

\_\_\_\_\_

### Immune checkpoint inhibitors in HCC

| Treatment                                     | #   | BCLC (A/B/C) | Therapy<br>line                                | Responses                                                                | Survival                         |
|-----------------------------------------------|-----|--------------|------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|
| Tremelimumab<br>30 mg q 3 months              | 21  | 3/6/12       | Not amenable to ablative therapies             | 3/17 PR<br>(3.6, 9.2, 15.8 mo)<br>76.4% DCR                              | TTP 6.48 months<br>OS 8.2 months |
| Tremelimumab<br>10 mg q 28 days<br>+ Ablation | 32  | -/7/21       | BCLC 2<br>Progressed on sorafenib              | 5/19 PR<br>84.2% DCR                                                     | TTP 7.4 months<br>OS 12.3 months |
| Nivolumab<br>3mg/kg                           | 206 | С            | Sora naïve/tolerant<br>Progressed on sorafenib | 9% ORR<br>68 of 174 evaluable pts<br>(39%) had a decline in tu<br>burden | 6 mo OS: 69%<br>umor             |

Sangro et al. Hepatol. 2013; Duffy et al J.Hepatol. 2016, Sangro et al. ILCA 2016

# Ongoing and future immunotherapy trials in patients with HCC

NATIONAL CANCER INSTITUTE

# **Ongoing immunotherapy trials in HCC**

- Immune checkpoint inhibitors
- Cytokine activated killer cells
- CAR T cells
- Antibodies
- Oncolytic viruses
- Vaccines

#### **Ongoing immunotherapy trials in HCC**

Immune checkpoint inhibitors



Lee et al. (2015) Gastroenterology 148:1383-1391

#### **Glypican 3**



Antibody

CAR T cells

Antibody fusion

TCR transduced T cells

# **Ongoing clinical trials**

| Treatment                         | #   | Therapy line         | Enrollment start date |
|-----------------------------------|-----|----------------------|-----------------------|
| Nivolumab (anti PD1) vs<br>sora   | 726 | 1 <sup>st</sup> line | 11/2015               |
| PexaVecc + sora vs sora           | 600 | 1 <sup>st</sup> line | 10/2015               |
| Pembrolizumab (anti-PD1)          | 408 | 2 <sup>nd</sup> line | 5/2016                |
| MEDI4736 (anti-PDL1+tremelimumab) | 144 | 2 <sup>nd</sup> line | 10/2015               |

# **Future immunotherapy trials**



# **Future immunotherapy trials**



#### Which is the best animal model for immunotherapy?



# **Immune correlatives**

#### Tumor

- Immune infiltrate
- PDL1 expression
- Mutational load

#### **Peripheral blood**

- Antigen-specific T cells
- Activation markers
- Viral responses
- Cytokines
- Suppressor cell populations
- ► T cell function


## Hemorrhagic Events in Hepatocellular Carcinoma Patients Treated With Antiangiogenic Therapies



# A Phase 1/2 Study Of TRC105 In Combination With Sorafenib In HCC

CD105 (endoglin) is expressed in the vascular endothelial cells of HCC tissue <sup>1</sup>

VEGF inhibition leads to increased expression of CD105<sup>2</sup>

HCC patients with CD105<sup>hi</sup> tumors have a worse outcome after resection <sup>3</sup>

CD105 expression in murine HCC



<sup>1</sup> Benetti et al. (2008) Cancer Res 68:8626-34 **NATIONAL** <sup>2</sup> Bockhorn et al. (2003) Clin Cancer Res 9:4221-26 <sup>3</sup> Yang et al. (2006) BMC Cancer 6:110

# A Phase 1/2 Study Of TRC105 In Combination With Sorafenib In HCC





NED NATIONAL

Mandatory endoscopy if cirrhosis

- Safety and dose Well tolerated
- no unexpected toxicity
- Phase II dose 15 mg

# A Phase 1/2 Study Of TRC105 In Combination With Sorafenib In HCC





- ALT/AST < x10 ULN</p>
- Mandatory endoscopy if cirrhosis



- no unexpected toxicity
- Phase II dose 15 mg



NE NATIONAL

#### The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

### TRC105 + Sorafenib

#### Sorafenib in Advanced Hepatocellular Carcinoma

| Table 2. Summary of Efficacy Measures.* |                        |                      |                          |         |
|-----------------------------------------|------------------------|----------------------|--------------------------|---------|
| Outcome                                 | Sorafenib<br>(N = 299) | Placebo<br>(N = 303) | Hazard Ratio<br>(95% CI) | P Value |
| Overall survival (mo)                   |                        |                      | 0.69 (0.55-0.87)         | <0.001  |
| Median                                  | 10.7                   | 7.9                  |                          |         |
| 95% CI                                  | 9.4-13.3               | 6.8-9.1              |                          |         |
| 1-yr survival rate (%)                  | 44                     | 33                   |                          | 0.009   |
| Time to symptomatic progression (mo)†   |                        |                      | 1.08 (0.88-1.31)         | 0.77    |
| Median                                  | 4.1                    | 4.9                  |                          |         |
| 95% CI                                  | 3.5-4.8                | 4.2-6.3              |                          |         |
| Time to radiologic progression (mo)     |                        |                      | 0.58 (0.45-0.74)         | < 0.001 |
| Median                                  | 5.5                    | 2.8                  |                          |         |
| 95% CI                                  | 4.1-6.9                | 2.7-3.9              |                          |         |
| Level of response (%)\$                 |                        |                      |                          |         |
| Complete                                | 0                      | 0                    |                          | NA      |
| Partial                                 | 2                      | 1                    |                          | 0.05    |
| Stable disease                          | 71                     | 67                   |                          | 0.17    |
| Disease-control rate (%)§               | 43                     | 32                   |                          | 0.002   |



NE NATIONAL

# **Adverse Events**

|                         | Phase I       |               |                |                |  |
|-------------------------|---------------|---------------|----------------|----------------|--|
| Toxicity                | 3 mg<br>(n=3) | 6 mg<br>(n=3) | 10 mg<br>(n=6) | 15 mg<br>(n=3) |  |
| Anemia                  | -             | -             | 1              | -              |  |
| Hand Foot Syndrome      | 1             | 1             | 4              | 2              |  |
| Hypophosphatemia        | 1             | -             | •              | -              |  |
| Hyperbilirubinemia      | 1             | 1             |                | -              |  |
| AST/ALT elevation       | 1             | -             | 2              | -              |  |
| Diarrhea                | 1             | -             | -              | -              |  |
| Intracranial Hemorrhage | -             | 1             | -              | -              |  |
| Lymphopenia             | -             | -             | 2              | •              |  |
| Cardiac Ischemia        | -             |               | 1 (G5)         | -              |  |
|                         |               |               |                |                |  |

# GI-Malignancy



#### **Clinical Team**

Austin Duffy Oxana Rusher Suzanne Fioravanti, Melissa Walker Stefanie Carey, Donna Mabry (Osama Rahma, Susanna Ulahannan)

Center for Interventional Radiology, CC Brad Wood, Elliot Levy Venkatesh Krishnasamy

Laboratory of Pathology David Kleiner, Mark Raffeld, Drew Pratt

**Biostatistics and Data Management Section** Seth Steinberg, David Vanzon

#### **Core Facilities**

CRC: Nursing Staff and NPs on 3NW Clinical Pharmacology Program NIH Tetramer Facility



www.cancer.gov www.cancer.gov/espanol